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INTRODUCTION 

At the present time, for a calculation of the fatigue strength of articles in machine 
building use is generally made of the Miner rule of the summation of the damages and empir- 
ical oarves of the Weller type. Under these circumstances no account is taken of the gradual 
development of fatigue cracks during operation, leading to the total failure of the construc~ 
tion. Therefore, methods for calculating the fatigue strength which take account of the 
growth of fatigue cracks are physically better justified. A method based on a theory of 
the growth of fatigue cracks developed by one of the present authors[l] is proposed below 
for calculating the fatigue strength. The actual problem of the fracture of a round shaft 
subjected of pure bending or torsion is considered. This problem is of great practical im- 
portance. The basic assumptions are first formulated and the stress-concentration factors 
at the edges of a fatigue crack are then determined; a simple differential equation is used 
to determine the number of cycles up to fracture (the service life of a shaft). Methods are 
indicated for evaluating the length of the initial crack and the constants of the material, 
figxring in the theory of fatigue cracks; a numerical example of the calculation of the far 
tigue service life of a shaft is given. 

Basic Assumptions and Statement of Problem 

Let a solid cylindrical shaft of round transverse cross section be subjected to pure 
bending under the action of the bending moment M, rotating with a constant angular velocity 
~o. The fracture of such a shaft takes place as the result of the development of a trans~ 
verse fatigue crack. The observed forms of these cracks are, as a rule, asymmetric, as a 
result of both the asymmetry of the initial cracks as well as the instability of the axi- 
symmetric form of the crack with respect to small random changes in tile circular line of the 
front [i]. (For a classification of the structure of fatigue cracks see, for example, 12]), 
Nevertheless, in the present investigation we shall assume that a fatigue crack at any given 
moment of time has the form of a circular concentric ring, growing with increasing distance 
from the boundray of the shaft. Another assumption consists in the fact that the wi4th of 
the ring at the initial moment of time is equal to 50, far less than the radius of the shaft, 

With loading by a rotating moment, at any fixed moment of time part of the ring is a 
zone D of instantaneous contact (superposition) of the opposite edges of the fatigue crack, 
while the remaining part, zone B, is an ordinary open crack of normal type (Fig. la), The 
unfractured part of the transverse cross section (outside of the annular crack and its plane) 
is denoted by E. 

At the common boundary between regions D and B the stress-concentration factor will be 
assumed equal to zero. This assumption is traditional with respect to theory of contact 
problems in the theory of elasticity. At the common boundary between regions D and E the 
stress-concentration factor is greater than zero; this factor is the greater, the closer the 
investigated point of the contour of the crack to the point A, lying on the line of symmetry 
of the regions D and E, i.e., the y axis (Fig. la). We take the origin of a Cartesian rec- 
tangular system of coordinates xy at the center of the transverse cross section of the shaft, 

In the zone D + E of the cross section, by virtue of symmetry the tangential stresses 
are equal to zero; only the axial stress ~z differs from zero (in the zone B the value of u z 
is also equal to zero). We make the following assumptions: 

a) The x axis is a neutral axis, separating the region of compression y ~ 0 and the re- 
gion of elongation y > 0 (i.e., for y = 0, ~z = 0); 

b) the common boundary of regions B and D lies on the x axis. 

The second assumption flows out of the first. An idealized form of the transverse cross 
section under consideration is shown in Fig. lb. 
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2. Stress-Concentration Factor 

By K I we denote the stress-concentration factor at the contour of a crack of normal form 
(by virtue of the condition of symmetry, the value of K I depends only on y). By virtue of 
the assumptions made, the function Kl(Y) increases monotonically with a rise in y: from zero 
for y = 0 to K I max at the point A (Fig. ib). 

We approximate the stress ffz in the region D + E (where it differs from zero) by the 
following expressions: 

by lf(R - ml) 2 -  (x "~-~ y~) 
(~z(x,Y)= V(a__l)=__(z=q_yS} for y > O ,  

ay for y < 0 

(m = 0.37ti187875), 

( 2 . 1 )  

where R is the radius of the shaft; I is the width of an annular fatigue crack at the moment 
of time under consideration; and a and b are unknown positive constants, subject to determin- 
ation. 

The approximation (2.1) correctly describes all the principal qualitative special char- 
acteristics of the field of ~z: for y = 0, ~z = O; with a rise in IYJ, the value of ~z rises 
monotonically, Oz(X, y) = az(--x , y); and at the common boundary between the regions B and E, 
the stress has the required singularity. We determine the constants a and b from the two 
equilibrium equations 

~ j  az (x, y) dxdy =.0, ] ~ Y(~z (x, y) dxdy = M.  (2 .2 )  
D-t-E 

Substituting expression (2.1) for ~z into (2.2), after certain computations we obtain 

b -= 24M 
_84 [t6kqQ (k) -}- 3xP (k)] qa , a =:bqSP (k), ( 2 . 3 )  

where 

(") P(k)=(t--k ~)F k, +(2k~--i) E k ,g ;  
1 

o 

t, i_k2t~,  ~ dr; k = - ~  T~' q = l - - r n ~ .  

Here F(k, =/2) and E(K, ~/2) are total elliptical integrals of the first and second kinds, 
respectively, 

~t/2 ~/2 

Specifically, for I = 0 we have 

a = 4M/=R4~ b = a. 

We calculate the stress-concentration factor K I max 

K l m a x  = lim [V2--~a z (0, y)] 

(c i s  t h e  d i s t a n c e  t o  p o i n t  A).  

at the point A, defined as follows: 

Using formulas (2.1) and (2.3), we find 
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24M ],"~kq (i -b k) (l -- kra) V'-l. 
Klmax = R3q~ [16kqQ (k) + 3~P (k) (2 .4)  

A curve of the dependence of the dimensionless quantity K I max Ra/2/M__ on the dimension- 
less depth of the crack ~/R is given in Fig. 2. 

We note that for very shallow cracks, in accordance with formula (2.4), we have 

K.  4.486M l 

This  a s y m p t o t i c  fo rmula  c o r r e s p o n d s  to  t h e  u n i f o r m  e l o n g a t i o n  o f  a h a l f  p l a n e  w i t h  an edge 
c r a c k ;  t h e  v a l u e  o f  t h e  e l o n g a t i n g  s t r e s s  a t  i n f i n i t y  i s  equa l  to  4M/(~R s) ( i . e . ,  to  a max- 
imal  e l o n g a t i o n a l  s t r e s s  Oz in  a round rod ,  b e n t  by the  moment M). Thus,  fo rmula  (2 .4 )  i s  
e x a c t  f o r  ~ << R. The r e g i o n  of  s m a l l  l e n g t h s  of  t he  c r a c k s  makes the  g r e a t e s t  c o n t r i b u t i o n  
to  t he  f a t i g u e  l i f e ;  t h e r e f o r e ,  p r e c i s e l y  i n  t h i s  r e g i o n  an e f f o r t  must  be made to  o b t a i n  t he  
most exactness of the determination of the stress-concentratlon factor. 

With an error of 1%, formula (2.4) is approximated by the following expression: 

4,486/-T = ~-~ + 

32 z z 
2c3~ (l -- ~) y ;,(l -- ~) a - 3'075 ~ + 

3. Determination of Number of Cycles up to Fracture 

The rate of growth of fatigue cracks, taking account of plastic and transient kinetic 
effects, is given hy the expression [i] 

dl 
d-~ = / (K• K1mJn), 

where 

(3.1) 

2 2 ) 
~ Klmax  { K / m a x _ _  Klmi  n K2c__ 2 

' 2 2 f (Klmax, KI min) [~ ~ "K-~: ~- let K I e  __  KI rain "J- 

2n X I X -- Kz rain)]. "~-~uoexp,[~-(KImax-~- Klmin)] o[ .'~(Klraax 

Here N is the number of cycles of sinusoidal loading; Klc is the fractureviscosity; lo(x) is 
a Bessel function of zero order of an imaginary argument; ~ is the frequency of the loading 
and 8, X, and vo are constants of the material. 

The time t is obviously expressed in terms of N and ~ by the following formula: 
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t = 2 n N / ~ .  

Formula (3.1) exhibits good agreement with the experimental data for many materials [i]. 

Solution of Eq. (3.1) in each actual case makes it possible to take account of the ef- 
fect of the following factors: the amplitude and the mean value of the load for a cycle, the 
geometry of the body, and, above all, the value and the arrangement of the initial defect lo, 
the frequency m, the temperature of the body, etc. 

The solution of the differential equation (3.1) can be written in explicit form: 

1 

N = / ( K l m a x  ' A:imin ) 
[o 

(for l=10 ,  N = O ) .  (3.2) 

The growth of a fatigue crack continues until the stress-concentration factor attains a 
limiting value KI_, after which the fracture will be dynamically unstable. Therefore, if, 
as an upper integration limit in (3.2), we substitute the critical malue of 1 = 1,, deter- 
mined as the smallest root of the equation 

Kimax(/,) = K~c, (3 .3 )  

formula (3.2) will give the number of loading cycles Nf required for fracture of the con- 
struction. 

In the problem under consideration, K I min = 0, and K I max is given by formula (2.4). 

We give some results of computations carried out neglecting kinetic transient effects % 
[here, we must set Vo = 0 in formula (3.2)]. In this case, in accordance with (2.4), formula 
(3.2) assumes the form 

where 

v ( 0  = 

Zo/R 
137ff ~ dt 

? (t) t l n  [ t--  ? (t)]' 
l~lR 

576n (1 -- m) M~t (t -- t) [2 -- t (1-4- m)] 
I t - - t  \ p I  l - - t  \1~" 

(3.4) 

According to formulas (2.4) and (3.3), the critical value of l** = l,/R depends on the 
dimensionless moment M,, 

M ,  = M / K z c R  '/,. 

F i g u r e  3 shows t h i s  dependence  l * * ( M , ) ,  d e t e r m i n e d  n u m e r i c a l l y  u s i n g  Eqs. (2 .6 )  and 
(3.3). The curve of Fig. 3 corresponds to brittle fracture; in its physical sense; it is 
analogous to the Griffiths curve. 

It follows from formula (3.4) that the dimensionless service life N, = 8Nf/R depends 

only on lo/R and M,. The function N,(M,, /o/R) was tabulated on an M-222 digital computer; 
Table i gives values of this function for a number of values of M, and lo/R of practical im- 
portance. For the intermediate values, interpolation must be used. 

4. Determination of the Constants KIr , lo, and B. 

To use the result of the theoretical calculations of the service life given in Table i, 
the constants of the material of the shaft Klc, lo, and 13 must be known previously. 

Evaluation of lo. A broad literature on the experimental mechanics of fracture and de- 
fectoscopy has been devoted to determination of the fracture viscosity Klc and the initial 
size of the defect lo. We take note of only one simple method, which enables a theoretical 
evaluation of the value of lo from the known tensile strength ~v and the fracture viscosity 

Klc. 

%For metals, in many practically important cases, they can be neglected. 
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In our case, for very small lengths of the crack I/R << i, the stress-concentratlon fac~ 
tor at the point A (see Fig. Ib) isequal to 1.1215o ~, where o is the greatest stress in a 
stretched filament at the surface of the shaft. We shall assume that for ~ = ~v and K I = 
Klc, 1 = Io (this corresponds to the assumption of the ideally brittle fracture of the shaft). 
From this, it follows that, in the given case 

I. = 0.253 K~J~. ( 4 . 1 )  

It is important to be able to use this simple and important evaluation of the length of a 
crack in the case of a viscous or transitional type of fracture. Let us examine this ques- 
tion using the example of a plate of width h and constant thickness containing a through edge 
slit of length lo and elongated by the force P at infinity (Fig. 4). The material of the 
plate is assumed to he ideally elastoplastic with a characteristic tensile strength ~ The 
character of the fracture (brittle or viscous) is determined by the brittleness numbers X ~i] 
(in the given case there will be two such numbers): 

2 9 2 2 

Ideally viscous fracture corresponds to the limiting case where X2 >> i; in this case the re- 
sistance of the plate is directly proportional to the area of the net cross section, and the 
dependence of the fracture stress P on lo will be rectilinear, so that for lo ~ 0 P = h~ s 
while for lo = h, P = 0 (line i in Fig. 4b). Ideally brittle fracture corresponds to the 
limiting case where X~ << i; in this case, the dependence of P on lo is shown by line 2 in 
Fig. 4b (it is determined by the methods of the linear mechanics of fracture from a purely 
elastic calculation). In practically allcases encountered, fracture takes place in accor- 

dance with curve 3 of Fig. 4b, lying between the above limiting curves i and 2. By lo, we 
mean thelength whichcorresponds to the intersectionof curves2 and 3. It is obvious that if lo > 
lo,' formula (4.1) gives an evaluation �9 below, i.e., a size of the actual defect greater 
than that determined by the formula (4.1). If lo < lo,, formula (4.1) gives an evaluation from 
above, i.e., a size of the actual defect less than that determined using formula (4.1). For 
Io = lo,, the evaluation (4.1) will be exact. 

All of the qualitative considerations advanced, relating to the example of Fig, 4, also 
relate directly to the starting problem (a shaft with an annular crack) with the simple re- 
placement of h by R. In practice, it is generally a case of very small initial cracks, where 
Zo < Z0,; consequently, formulas (4.1), as a rule, give an evaluation from above for the in- 
itial cracks. Thus, the use of the value of Zo determined by formula (4.1) in a calculation 
of the fatigue life leads to an increased margin of strength, so that the number of cycles 
up to fracture Nf obtained from such a calculation, other conditions being equal, will be 
less than the true value. 

On the basis of some literature data on Ov and Kic , by using (4.1), Table 2 was set up, 
giving an evaluation from above of the initial length lo for several brands of steels, 

Evaluation of 8" In the case under consideration, vo = 0, the value of 8 can be ob~ 
tained by a comparison between the experimental diagram of dl/dN - Kit (recorded with K I ~in - 
0) and the theoretical dipendence T 

d l  - ~ , K Z  max ( 4  �9 2 )  
= X~c ' 

which is a partial case of (3.1). The results of such a comparison for a number of materials 
are given in [i]. 

#This formula holds when K. > Kiy , where Kiy is the threshold stress-concentratlon factor 
[i]. For K I min < Kiy, dl/~N~=x0- 
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TABLE 2 

av, lo, mm 
KIc' !Source Material kg/m m2 kg/mmS/z by (4.1) 

20KhGSNMA 
St. 3 
16GNMA 
22K 
ShKh15 
50Kh 
50KhN 
A216SS 
E24(type 40KhNM 

157 
51 
57 
5t 

241 
235 
230 
50 

203 

339 
70 

405 
300 
65 
82 
76 

550 
126 

t,i7956 
0,47662 

i2,77264 
8,75432 
0,01840 
0,03080 
0,02762 

30,613 
0,09747 

[3] 
[4] 
15] 
[51 
[61 
[61 
I61 
[71 
[81 

TABLE 3 

Brand of %.2, Or, Klc, 
steel kg/mmZ kg/mm2 a,u ~,~ kg/mmS/Z 

15Kh2MFA 

St. 20 
53 
24,2 

70,5 
45.8 

20,0 
26,6 

69,4 i 528 
57,6 574 

a 

~,o0 .j 

o, lo .. 

6 
A 

O,Or ':i 
40 60 80 r 

b 

l 
,~7 

�9 I 

o,o, "/" r I 
,~0 60 801oo 

AKI, kg-mm'3/2 

~ ~oo [ 

Vr t o  

? J 

z 
~.~o II'I 

o "YJ 

, ~ 
2O &O ~00 

8 
7 
6 
S 

4 

J 

2 

! 

b 
I111~ 
IIII1 

[lll/~ 
lllq4 

1 
20 25 JO 

Z~KI, kg. ram-3/z 

Fig. 5 Fig. 6 

Using this method, from known experimental data we determine the value of 8 for some 
brands of steel used as a material for shafts. 

In [9], an investigation was made of the rate of growth of fatigue cracks in low- 
strength steels 15Kh2MFA and St. 20. The mechanical properties of these steels at room tem- 
perature are given in Table 3. In [9], standard solid samples with a thickness of 20 mm were 
subjected to off-center cyclic elongation (the initial length of the crack was 25 ram). After 
the growth of a considerable fatigue crack, the same samples were divided for determination 
of the critical opening at the end of the crack; the fracture viscoslty, given in Table 3, 
was found hy a recalculation with respect to the critical opening [10]. The mean factor 
asymmetry of the loading cycle, i.e., K I mln/Kl max, was equal to approximately 0.2 (in pass- 
ing, with sufficiently small factors, their effect is insignificant). Figure 5 gives ex~ 
perimental data of [9] and theoretical curves plotted using (3.1) (where vo m 0 and K I rain / 
~.max_= 0.2) for the following values of 8:St. 20 (Fig. 5a), 8 = 0.234 mm; steel 15Kh2MFA 

(Fig. 5b), 8 = 0.0823 mm. As can be seen, experiment and theory are in excellent agreement 
with the above values of 8. 
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TABLE 4 

~V' ! Material kg/mm2 i KIe' " kg/rnrd~/z B, turn /o, mm Source- 

Steel 20 

15Kh2MFA 
NU-80 (t~'pe 15KhN) 
Ferrite steel 

~0~, 
kg /mm 2 

24,2 45,8 
53 70.5 
76 89 
33.1 44,8 

574 
528 
354 
t41,6 

�9 0,234 
0,0823 
0,0t2 
0,001524 

39,739 
t4,191 
4,003 
2,527 

[9, t0 ] 
[9, 'lOl 
[111 
[12] 

-~'-' ~ " ~ "  

,% 
Fig. 7 

In [ll], an investigation was made of the growth of cracks with low-cycle fatigue in 
domestic steel 15KhN with a martensite structure (ao.2 = 76 kg/mm 2, ~v = 89 kg/mm2). Flat 
samples (measuring 22.86 =m • 152.4 mm • 760 m~) with a central surface crack were subjected 
to cyclic loading by an axial force. The maximal level of the nominal stresses with cyclic 
loading was 50-60% of the yield point. The initial crack had the form of a half circle of 
radius 2.54 mmwith its center at the surface of the sample; it was assumed that during the 
process of growth of the fatigue crack its form remained semicircular with the same center. 

The asymmetry factor of the cycle was equal to zero. Figure 6a gives a theoretical 
curve plotted using formula (4.2) for the following values of the constants: 

= 0.012 mm, 

Kz= = 354 kg/mmS/~.  

Figure 6 also gives the experimental data of [Ii], The agreement between the two sets of 
data was very good. 

In [12], an investigation was made of the rate of growth of fatigue cracks in ferrite 
steel (%): C, 2.2; Mn, 0.82; Nb, 0.012; P, 0.006; S, 0.021; Ti, 0.05; Ni, 0.05; Cr, 0.05; 
Mo, 0.05; Cu, 0.05; W, 0.005. 

The thickness of the sample was 9.5 mm, the tensile strength was 44.8 kg/mm 2, and the 
yield point was 33.1 kg/mm 2. The asymmetry factor of the cycle was 0.05. Figure 6b shows 
a theoretical curve, plotted for the following values of the constants: 

= 0.00i524 mm, K ~ :  = 141.6 ~/mmS/Z. 

The curve well describes the experimental data of [12]. 

Data obtained at this point for the constants Io, 8, and KIe are given in Table 4; they 
can he used in calculatiQns of the fatigue strength of shafts. 

5. Concrete Example of Calculation of the Service Life of a Shaft 

At the middle of a shaft of length L let there be rotating a heavy flywheel with a 
weight Po (the weight of the shaft is not taken into consideration). By e we denote the ec- 
centricity of the flywheel (Fig. 7). 
bearings 

(g is the acceleration of gravity). 

The maximal value of the thrust reaction P~ in the 

The greatest value of the bending moment M in the most dangerous (middle) cross section 
of the shaft 
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31 =-TPoL -r 7 e j .  

The material of the shaft is steel 15Kh2MFA, whose principal constants are given in Tables 
3 and 4. 

We assume the following numerical values of the parameters: R = 80 mm, L = 2000 ram, 
r = 0.i mm, mo= 60 rpm, and Po = 14,170 kg. Here the elongational stress in a surface fila- 
ment of the most dangerous cross section is av/4. Using (3.4), in this case we obtain 

N = 4.10 4 cycles. 

With the use of a steel of type 15KhN for fabrication of the shaft, for the same values 
of the parameters R, L, r and mo (Smax = ~v/4, Po = 17,890 kg), theservice life is increased 
by approximately four times, i.e., 

N = 1.7.105 cyc l e s .  

Interpolation using Table i leads to close results. 
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